129 research outputs found

    Young, Massive Star Candidates Detected throughout the Nuclear Star Cluster of the Milky Way

    Full text link
    Aims. Young, massive stars have been found at projected distances R < 0.5 pc from supermassive black hole, Sgr A* at the center of our Galay. In recent years, increasing evidence has been found for the presence of young, massive stars also at R > 0.5 pc. Our goal in this work is a systematic search for young, massive star candidates throughout the entire region within R ~ 2.5 pc of the black hole. Methods. The main criterion for the photometric identification of young, massive early-type stars is the lack of CO-absorption in the spectra. We used narrow-band imaging with VLT/ISAAC to search for young, massive stars within ~2.5 pc of Sgr A*. Results. We have found 63 early-type star candidates at R < 2.5 pc, with an estimated erroneous identification rate of only about 20%. Considering their K-band magnitudes and interstellar extinction, they are candidates for Wolf-Rayet stars, supergiants, or early O-type stars. Of these, 31 stars are so far unknown young, massive star candidates, all of which lie at R>0.5pc. The surface number density profile of the young, massive star candidates can be well fit by a single power-law, with Gamma = 1.6 +- 0.17 at R < 2.5 pc, which is significantly steeper than that of the late-type giants that make up the bulk of the observable stars in the NSC. Intriguingly, this power-law is consistent with the power-law that describes the surface density of young, massive stars in the same brightness range at R < 0.5 pc. Conclusions. The finding of a significant number of newly identified early-type star candidates at the Galactic center suggests that young, massive stars can be found throughout the entire cluster which may require us to modify existing theories for star formation at the Galactic center. Follow-up studies are needed to improve the existing data and lay the foundations for a unified theory of star formation in the Milky Way's NSC.Comment: 20 pages, 11 figures, Accepted for publication in Astronomy and Astrophysic

    The distribution of stars around the Milky Way's black hole III: Comparison with simulations

    Full text link
    The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic Centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. We here present a solution to this long-standing problem. We performed direct-summation N−N-body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GC's nuclear cluster. We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of Γ≈0.3\Gamma \approx 0.3 in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.Comment: Accepted for publication, few typos fixe

    SOWAT: Speckle Observations With Alleviated Turbulence

    Full text link
    Adaptive optics (AO) systems and image reconstruction algorithms are indispensable tools when it comes to high-precision astrometry. In this paper, we analyze the potential of combining both techniques, i.e. by applying image reconstruction on partially AO corrected short exposures. Therefore we simulate speckle clouds with and without AO corrections and create synthetic observations. We apply holographic image reconstruction to the obtained observations and find that (i) the residual wavefronts decorrelate slowlier and to a lower limit when AO systems are used, (ii) the same reference stars yield a better reconstruction, and (iii) using fainter reference stars we achieve a similar image quality. These results suggest that holographic imaging of speckle observations is feasible with 2-3 times longer integration times and 3mag fainter reference stars, to obtain diffraction-limited imaging from low-order AO systems that are less restricted in sky-coverage than typical high-order AO systems.Comment: 18 pages, 13 figures, and 3 table

    GALACTICNUCLEUS: A high-angular-resolution JHKsJHK_s imaging survey of the Galactic centre. IV. Extinction maps and de-reddened photometry

    Full text link
    The extreme extinction (AV∌30A_V\sim30\,mag) and its variation on arc-second scales towards the Galactic centre hamper the study of its stars. Their analysis is restricted to the near infrared (NIR) regime, where the extinction curve can be approximated by a broken power law. Therefore, correcting for extinction is fundamental to analyse the structure and stellar population of the central regions of our Galaxy. We aim to, (1) discuss different strategies to de-redden the photometry and check the usefulness of extinction; (2) build extinction maps for the NIR bands JHKsJHK_s and make them publicly available; (3) create a de-reddened catalogue of the GALACTICNUCLEUS (GNS) survey, identifying foreground stars; and (4) perform a preliminary analysis of the de-reddened KsK_s luminosity functions (KLFs). We used photometry from the GNS survey to create extinction maps for the whole catalogue. We took red clump (RC) and red giant stars of similar brightnesses as a reference to build the maps and de-reddened the GNS photometry. We discussed the limitations of the process and analysed non-linear effects of the de-reddening. We obtained high resolution (∌3â€Čâ€Č\sim3'') extinction maps with low uncertainties (â‰Č5\lesssim5\,\%) and computed average extinctions for each of the regions covered by the GNS. We checked that our maps effectively correct the differential extinction reducing the spread of the RC features by a factor of ∌2\sim2. We assessed the validity of the broken power law approach computing two equivalent extinction maps AHA_H using either JHJH and HKsHK_s photometry for the same reference stars and obtained compatible average extinctions within the uncertainties. Finally, we analysed de-reddened KLFs for different lines of sight and found that the regions belonging to the NSD contain a homogeneous stellar population that is significantly different from that in the innermost bulge regions.Comment: Updated to the final version accepted for publication in Astronomy & Astrophysics. 17 pages, 11 figure

    Black-hole activity feedback across vast scales

    Full text link
    Both observational and theoretical studies of black-hole activity or active galactic nucleus (AGN) feedback have been ongoing since the first indication of supermassive black holes powering quasar activity in the 1960s. Although several crucial astrophysical questions have been answered in the following decades, a number of open problems remain, in particular how AGN feedback operates over nearly eight orders of magnitude - from scales of ∌10−3 pc\sim 10^{-3}\,{\rm pc} to the galaxy-cluster scales of a few hundred kiloparsecs. At the beginning of June 2022, about 50 junior as well as senior researchers met in Brno for the post-lockdown edition of the Cologne-Prague-Brno meeting to try to connect the dots.Comment: in print in Nature Astronomy as a meeting report; 5 pages, 1 figur

    The low-mass content of the massive young star cluster RCW 38

    Get PDF
    KM acknowledges funding by the Joint Committee of ESO/Government of Chile, and by the Science and Technology Foundation of Portugal (FCT), grant no. IF/00194/2015. Part of the research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [614922]. RJ acknowledges support from NSERC grants. JA acknowledges funding by the Science and Technology Foundation of Portugal (FCT), grant no. SFRH/BPD/101562/2014.RCW 38 is a deeply embedded young (∌1 Myr), massive star cluster located at a distance of 1.7 kpc. Twice as dense as the Orion nebula cluster, orders of magnitude denser than other nearby star-forming regions and rich in massive stars, RCW 38 is an ideal place to look for potential differences in brown dwarf formation efficiency as a function of environment. We present deep, high-resolution adaptive optics data of the central ∌0.5 × 0.5 pc2 obtained with NACO at the Very Large Telescope. Through comparison with evolutionary models, we determine masses and extinction for ∌480 candidate members, and derive the first initial mass function (IMF) of the cluster extending into the substellar regime. Representing the IMF as a set of power laws in the form dN/dM ∝ M−α, we derive the slope α = 1.60 ± 0.13 for the mass range 0.5–20 M⊙,which is shallower than the Salpeter slope, but in agreement with results in several other young massive clusters. At the low-mass side, we find α = 0.71 ± 0.11 for masses between 0.02 and 0.5 M⊙, or α = 0.81 ± 0.08 for masses between 0.02 and 1 M⊙. Our result is in agreement with the values found in other young star-forming regions, revealing no evidence that a combination of high stellar densities and the presence of numerous massive stars affects the formation efficiency of brown dwarfs and very-low-mass stars. We estimate that the Milky Way galaxy contains between 25 and 100 billion brown dwarfs (with masses >0.03 M⊙).Publisher PDFPeer reviewe

    Status and new operation modes of the versatile VLT/NACO

    Full text link
    This paper aims at giving an update on the most versatile adaptive optics fed instrument to date, the well known and successful NACO . Although NACO is only scheduled for about two more years at the Very Large Telescope (VLT), it keeps on evolving with additional operation modes bringing original astronomical results. The high contrast imaging community uses it creatively as a test-bench for SPHERE and other second generation planet imagers. A new visible wavefront sensor (WFS) optimized for Laser Guide Star (LGS) operations has been installed and tested, the cube mode is more and more requested for frame selection on bright sources, a seeing enhancer mode (no tip/tilt correction) is now offered to provide full sky coverage and welcome all kind of extragalactic applications, etc. The Instrument Operations Team (IOT) and Paranal engineers are currently working hard at maintaining the instrument overall performances but also at improving them and offering new capabilities, providing the community with a well tuned and original instrument for the remaining time it is being used. The present contribution delivers a non-exhaustive overview of the new modes and experiments that have been carried out in the past months.Comment: 10 pages, 7 figures, SPIE 2010 Astronomical Instrumentation Proceedin
    • 

    corecore